Evolution of Mutational Robustness in an RNA Virus
نویسندگان
چکیده
Mutational (genetic) robustness is phenotypic constancy in the face of mutational changes to the genome. Robustness is critical to the understanding of evolution because phenotypically expressed genetic variation is the fuel of natural selection. Nonetheless, the evidence for adaptive evolution of mutational robustness in biological populations is controversial. Robustness should be selectively favored when mutation rates are high, a common feature of RNA viruses. However, selection for robustness may be relaxed under virus co-infection because complementation between virus genotypes can buffer mutational effects. We therefore hypothesized that selection for genetic robustness in viruses will be weakened with increasing frequency of co-infection. To test this idea, we used populations of RNA phage phi6 that were experimentally evolved at low and high levels of co-infection and subjected lineages of these viruses to mutation accumulation through population bottlenecking. The data demonstrate that viruses evolved under high co-infection show relatively greater mean magnitude and variance in the fitness changes generated by addition of random mutations, confirming our hypothesis that they experience weakened selection for robustness. Our study further suggests that co-infection of host cells may be advantageous to RNA viruses only in the short term. In addition, we observed higher mutation frequencies in the more robust viruses, indicating that evolution of robustness might foster less-accurate genome replication in RNA viruses.
منابع مشابه
Does Mutational Robustness Inhibit Extinction by Lethal Mutagenesis in Viral Populations?
Lethal mutagenesis is a promising new antiviral therapy that kills a virus by raising its mutation rate. One potential shortcoming of lethal mutagenesis is that viruses may resist the treatment by evolving genomes with increased robustness to mutations. Here, we investigate to what extent mutational robustness can inhibit extinction by lethal mutagenesis in viruses, using both simple toy models...
متن کاملMechanisms of genetic robustness in RNA viruses.
Two key features of RNA viruses are their compacted genomes and their high mutation rate. Accordingly, deleterious mutations are common and have an enormous impact on viral fitness. In their multicellular hosts, robustness can be achieved by genomic redundancy, including gene duplication, diploidy, alternative metabolic pathways and biochemical buffering mechanisms. However, here we review evid...
متن کاملViral RNA and evolved mutational robustness.
Many properties of organisms show great robustness against mutations. Whether this robustness is an evolved property or intrinsic to genetic systems is by and large unknown. An evolutionary origin of robustness would require a rethinking of key concepts in the field of molecular evolution, such as gene-specific neutral mutation rates, or the context-independence of deleterious mutations. We pro...
متن کاملIn silico predicted robustness of viroid RNA secondary structures. II. Interaction between mutation pairs.
Viroids are plant subviral pathogens whose genomes are constituted by a single-stranded and covalently closed small RNA molecule that does not encode for any protein. Most of the 29 described viroid species fold into a rodlike or quasi-rodlike structure, whereas a few of them fold as highly branched structures. In a previous study, we used RNA thermodynamic secondary structure prediction algori...
متن کاملOn the possible role of robustness in the evolution of infectious diseases.
Robustness describes the capacity for a biological system to remain canalized despite perturbation. Genetic robustness affords maintenance of phenotype despite mutational input, necessarily involving the role of epistasis. Environmental robustness is phenotypic constancy in the face of environmental variation, where epistasis may be uninvolved. Here we discuss genetic and environmental robustne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 3 شماره
صفحات -
تاریخ انتشار 2005